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Abstract 

Open-ended questions require a more descriptive response 
than do closed-ended questions. Questions of this type can 
be broken down into categories that identify the format and 
content of the expected response. Accurate classification of 
open-ended questions can lead to more appropriate 
responses from question-answering systems and other 
intelligent systems – leading to better human/computer 
interaction.  This paper demonstrates how support vector 
machines (SVM) are used successfully in the classification 
of open-ended questions. 

Introduction 
Question-Answering (QA) systems have a goal of 
returning intelligent responses that are correctly formatted 
based on the needs of the question – instead of a list of 
documents, as is the case with Information Retrieval (IR) 
systems.  Accurate classification of questions based on the 
type of response required is critical to QA systems so that 
the response is appropriate to the goals set out by the 
question. In a similar manner, categorization of questions 
by subject matter has been shown to enhance the accuracy 
of QA systems by matching a question category to an 
answer category.  In (Moschitti and Harabagiu, 2004), an 
SVM (along with other techniques) was trained to classify 
questions into subject categories, which could then be 
matched to answer categories, thus improving question-
answering performance. 

For the purpose of this study, we will define an open-
ended question as a question that requires a thoughtful 
answer.  Interviewers, marketing people, and instructors 
use open-ended questions in order to extract as much 
information as possible from a subject.  For example, 
instead of asking, “Is the number 7 a prime number?” 
which is a closed-end question requiring only a “yes” or 
“no” response; the question could be asked, “Explain why 
the number 7 is a prime number.” The latter question 
requires a descriptive and thoughtful answer. 

Open-ended questions can be further categorized into 
differing classes depending on the question content and 
wording.  Descriptive answers are required for questions 
such as “Describe the characteristics of an isosceles 
triangle.”  A question such as “List the advantages and 
disadvantages of solar panel based energy generation” calls 
for a contrasting response.  If a technique can be found that 

is able to accurately classify open-ended questions, this 
technique could add much value to the problems of 
human/machine interaction by allowing a system to 
respond more appropriately to natural language requests. 

The Support Vector Machine (SVM) is an emerging 
machine learning technology that is becoming a more 
viable alternative to augment and even replace other more 
mature technologies such as neural networks and nearest 
neighbor algorithms (Hearst et al., 1998).  The Support 
Vector Machine grew out of research into statistical 
learning techniques in the late seventies conducted by 
Vladimir Vapnik and was furthered in the 1990s by Vapnik 
and others at AT&T Bell Laboratories (Vapnik, 1998).  
The SVM is a supervised learning machine that is trained 
by using a dataset that contains feature sets with both 
positive and negative examples of the data to be 
categorized.  In its simplest form, as shown in Figure 1, the 
SVM maps the training dataset into a feature space and 
calculates an optimal hyperplane (or decision boundary) 
that will separate the positive and negative feature points in 
such a manner as to maximize the distance (or margin) 
from each classification boundary (or support vector).  
(Burges, 1998) Once the training is complete, new feature 
points can be classified by the SVM by determining where 
the feature lies in relation to the hyperplane. 

 
 
 

 

Figure 1 – Basic SVM Theory



    The open-ended question classification problem is 
closely related to the text classification problem, in which a 
machine learner must classify documents that may or may 
not display a common overlap of keywords or key phrases 
that establish document class membership.  The use of an 
SVM in text classification has been well researched and 
found to have good performance without complex natural 
language processing (Joachims, 2001).  The use of an 
SVM to solve a text classification problem requires that 
importance weights be assigned to each term in the corpus 
of training documents - resulting in a highly dimensional 
feature set.  (Leopold and Kindermann, 2002) 
demonstrates term-to-vector transformations and compares 
the performance of word-stemming vs. non-stemming 
along with various weighting factors including: inverse 
document frequency and redundancy when used as input to 
an SVM for document retrieval.  They show that word 
stemming along with Term-Frequency-Inverse Document 
Frequency (TF-IDF) achieves good performance in 
document recall with a similar SVM as was employed in 
this research. 

It could be argued that perhaps a simple keyword search 
approach may yield performance equal or better than that 
of machine learning techniques.  However, this would 
represent a tremendous amount of work and ignores the 
fact that subtleties may exist in the problem space that 
make straightforward text parsing and keyword recognition 
problematic (Zhang and Lee, 2003).   Also, the SVM has 
been shown to have the best classification accuracy in 
other question classification problems when pitted against 
other machine learning algorithms (including Nearest 
Neighbor and Naïve Bayes, for example) (Zhang, and Lee, 
2003). 

Question Classification and Parsing 
The goal of this experiment is to transform the question 
dataset into feature vectors that can be used to train an 
SVM to recognize a specific class of open-ended question.  
In order to accomplish this task, several steps are required.  
First, a set of open-ended question classes must be 
established based on the type of answer required for each 
class.  Table 1 lists the classes that will be used to group 
the training question dataset for this experiment. 

For each class of question, training data that contains 
both positive and negative question examples will be 
processed and supplied to the SVM.  Then the performance 
of the machine will be tested using other examples that 
have a known classification.  For the purposes of this 
study, the SVM will be limited to a binary classifier, so 
each classification will have separate training and testing 
datasets.   

Testing and Training Data 
Each question class consists of a set of files containing all 
questions required for training and testing the SVM in that 
classification. The set of questions that are to be presented 
to the SVM are assumed to be in American English and 
have good sentence syntax, structure, and semantics.  No 
extra language processing is done to ensure that each 
question makes sense grammatically and intellectually.   

Forming Text Attribute Data 
In order for the input data to be processed by the SVM, the 
text must be processed into a word list with attribute 
vectors.  The input dataset for a classification will be 
filtered to remove symbols and punctuation and to remove 
stop words such as: a, and, the, etc.  Punctuation and stop 
words have no bearing on the classification of the question.  
Word stemming will also be applied to reduce words to 
their root form. Stemming removes inflections and 
variations from words – such as “s” in plural words, or “ly” 
in adverbs – so that only the root of the word remains.   

 

Table 1 – Open-Ended Question Classifications 

Question Class Expected Answer Format 
Advantage/Disadvantage Advantages and disadvantages 

(questions may require certain 
number) 

Cause and Effect Explain the effect of something 
on something else 

Comparison Differences/similarities between 
two or more entities 

Definition Relatively short 
explanation/description – few 
lines or few sentences 

Example Explain with an example, 
provide example 

Explanation More explanation – more 
descriptive than ‘what’ questions 

Identification Identification of some kind 
List A list of points – may or may not 

be in sequence 
Opinion Give personal opinion on a 

particular point or statement – 
either support or argue 

Rationale Explain why a 
statement/question is true or false 

Significance Explain the importance of 
something or why it may be 
important 



This will maximize the term count of the root word and 
boost the influence of the word in the question class.  At 
this point a word list can be built containing the word 
stems of the input data.  From this word list, a training (and 
testing) dataset can then be built containing all questions 
for a classification in the following format: 

 
 1. +1 (positive) or –1 (negative) classification 
 2. pairs of attributes containing the index of a word 

contained in the question in the word list along with the 
TF-IDF of the word. 

The TF-IDF (Term Frequency – Inverse Document 
Frequency) is calculated for each term and included as a 
feature value in the final vector for each example. TF-IDF 
is frequently used in text processing and document 
retrieval. The TF-IDF of a term is a weight that indicates 
the relevance of the term in the corpus of documents.  
Term Frequency is simply a count of the number of times a 
term appears in a question.  Inverse Document Frequency 
is a measure of the importance of a term in a set of 
documents.  Thus weight should represent the importance 
of a term in the question class. 

Training the SVM 
The resulting vector list is used to train an SVM to 
correctly distinguish a question that belongs to a particular 
classification (and one that does not belong).  The SVM 
that is used for this experiment is the SVMLight 
(Joachims, 1999) program implemented by Thorsten 
Joachims (this software is available at 
http://svmlight.joachims.org/). The SVM is executed in 
training mode and allowed to create a data model for each 
classification.  As discussed previously, the SVM operates 
by plotting the feature vectors, calculating the support 
vectors and finding the optimal hyperplane that separates 
the positive and negative support vectors.  Once the SVM 
is trained, classification can occur by determining where a 
feature vector lies in relation to the established support 
vector model.    

Testing the SVM 
Once the SVM has been trained, testing and evaluation of 
the SVM model can take place.  While executing the SVM 
software in classification mode, the testing dataset (which 
has been prepared in the same manner as the training 
dataset) is provided to the SVM and the classification 
results are compared against the known (positive or 
negative) classification of each question.  The error rates of 
the SVM can then be measured and reported. 

Experiment Setup 

The majority of the processing in this experiment is 
consumed by the text processing necessary to generate the 
appropriate input for the SVM.  Figure 2 illustrates the 
steps required to complete the experiment. 

As previously discussed, input to the experiment 
consists of a file of open-ended questions that belong to a 
certain classification.  All of the test data for one 
classification of question is stored in a single directory 
with the following file names: 

 
 train_pos.txt, train_neg.txt–training examples (pos. and neg.)  
 test_pos.txt, test_neg.txt –testing examples(pos. and neg.)  
     

In this experiment we used questions from a question 
bank of 1000 open-ended questions that were created by 
the authors or inspired from various textbook and reference 
sources.   They covered software engineering and 
operating systems areas of computer science.  Each 
question was manually segregated into the proper question 
class and placed into the appropriate training or testing file 
with no particular ordering observed. 

 
p
Figure 2 – SVM Experiment Setu



   All of the files contain one question per line and each 
line terminated with a ASCII carriage return / line feed 
sequence. The files are used to generate an overall word 
list that can be provided to the word vector generator.  In 
order to generate the most efficient word list, the questions 
are parsed and tokenized.  Punctuation and stop words are 
removed.  Stemming is then applied to the words, so that 
only the root word of each token remains. The word list is 
then generated as the final step in this process. 

Word vector generation is then performed by comparing 
each term in each question to the word list in such a way as 
to generate the required TF-IDF value.  The feature vector 
is then enumerated for each question, noting whether the 
vector represents a positive (1) or a negative (-1) example. 
The format of the vector list produced is sparse vectors, 
where properties (terms) with zero values are not explicitly 
listed.  The index of the term in the word list is specified 
along with the TF-IDF of the term.  An example of the 
complete text to vector list transformation is given here: 

 
Example Questions from the Explanation Class: 
 

Explain the concept of functions. 
Explain the purposes of a device driver. 

 
Word List Generated: 
 

Explain, concept, funct, purpos, devic, driver 
 
Resulting Sparse Vectors (some decimals removed): 
 

1 1:0.208106  2:0.76535539  3:0.60903436 
1 1:0.133641  4:0.62165690  5:0.45741152  6:0.62165690 

 
Separate vector list files are produced for training and 

testing data.  The overall number of features in the datasets 
may reach into the thousands, but the SVMLight 
implementation is able to handle feature sets of this size 
without adjustment. 

Once the text preparation is complete, the SVM training 
and testing can proceed.  First the SVM is given the 
training data so that the support vectors can be calculated 
and the decision boundaries are established.  Then, the 
testing dataset is supplied to the training model so that the 
SVM can make predictions on the test cases and judge the 
accuracy of the classification decisions.  The SVMLight 
classification module will log the results of the testing so 
that the statistics can be analyzed upon completion of the 
experiment. 

Results 
The training dataset was given as input to the SVM learner 
application, then a separate test dataset was given to the 
SVM classifier application and the resulting data was 
analyzed. The results of the experiment are summarized in 
Table 2.  The training dataset consisted of equal numbers 
of both positive and negative examples of each question 
classification.  The testing dataset contained both positive 

and negative examples as well, so the SVM was judged on 
the precision and accuracy of classifying both positive and 
negative examples of each classification.  The magnitudes 
of the term weights were normalized to [0, 1] which 
improves the accuracy of the SVM.  The feature vectors 
were kept in the same order as the question lists, so that 
incorrect identifications could be easily traced back to the 
original question.  SVMLight provides several log files 
that are invaluable for troubleshooting the classifier and 
determining the final performance statistics.   

Overall, the SVM classifier was, on average, 74.6% 
accurate in classifying both positive and negative test 
examples for each class of open-ended question.  The 
classifier displayed the greatest accuracy with the 
Significance class (92.9%); the least accuracy with the 
Identification class (50.0%). 

 

Table 2 – SVM Classification Results 

Question 
Classification 

Total Training 
Examples 

(Pos. & Neg.) 

Accuracy Precision/ 
Recall 

Advantage/ 
Disadvantage 

30 80.0% 66.7% / 80.0% 

Cause and 
Effect 

30 73.3% 55.6% / 100.0%

Comparison 100 87.5% 85.7% / 90.0% 

Definition 240 68.3% 64.9% / 80.0% 

Example 60 55.6% 50.0% / 50.0% 

Explanation 300 83.3% 83.3% / 50.0% 

Identification 60 50.0% 66.7% / 37.5% 

List 30 86.7% 80.0% / 80.0% 

Opinion 60 75.0% 72.7% / 80.0% 

Rationale 60 70.0% 70.0%/ 70.0% 

Significance 30 92.9% 100.0% / 80.0%
 

 
Precision measures the percentage of positive examples 

that were correctly identified as opposed to the total 
number of correct and incorrect positive examples 
identified and is given by: 

 

ivesFalsePositvesTruePositi
vesTruePositiecision

+
=Pr  

 
The Significance class achieved the highest precision 

(100%) and the Example class had the lowest precision 
(50.0%).  



Recall (also known as sensitivity) measures the 
percentage of positive examples that were correctly 
identified as opposed to the total number of positive 
examples that existed and is given by: 
 

ivesFalseNegatvesTruePositi
vesTruePositicall

+
=Re  

 
The Cause and Effect class attained the highest recall 

(100.0%) and the Identification class had the lowest recall 
(37.5%). 

Conclusions 
In training the SVM for this task, we were hoping that the 
SVM could be trained to recognize the occurrence of 
certain keywords or phrases in a question class and then, 
based on the recurrence of these same keywords, be able to 
correctly identify a question as belonging to that class.  In 
the same way, if a question did not contain certain 
keywords, the SVM should distinguish the question as not 
belonging to the question class being tested.  In our trials, 
we had mixed results - with some classes performing better 
than others. 

In analyzing the test results, there does not seem to be a 
correlation between the number of training examples and 
the accuracy of the classifier.  For even though the 
Explanation class contained the most training examples 
(300), the SVM did not exhibit the most accuracy in this 
class.  In fact, the most accurate class (Significance – 
92.9%) was among the classes with the fewest examples. 

The poor results of the SVM classifier may be the result 
of ambiguous terms appearing in some of the 
classifications.  For example, in the Identification class the 
keyword “what” appears in most of the positive training 
and testing examples.  This same keyword is also a 
common word in other question classes as well, which may 
cause some ambiguity in the classifier.  The low recall 
percentage of the Identification class shows that the 
classifier associated more of the features in the positive test 
examples with the negative training examples than it 
associated with the positive training examples. 

Better results were obtained in classes that contained 
keywords that were uncommon in the other categories.  For 
instance the Significance class contains the keywords 
“significance” and “importance” which are uncommon in 
the other classes.  This is also the case in the Comparison 
class, which contains words such as “compare” or 
“differences” which are also infrequent in the other classes. 

We can conclude that a properly trained Support Vector 
Machine is able to accurately classify open-ended 
questions. But occurrences of common keywords that 
frequently appear across question classifications results in 
lowered accuracy.  
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