
Open-Ended Question Classification
Using Support Vector Machines

Jim Bullington, Ira Endres, and Muhammad Asadur Rahman

Department of Computer Science

University of West Georgia
Carrollton, GA 30118

{jbullin1, iendres1}@my.westga.edu; mrahman@westga.edu

Abstract

Open-ended questions require a more descriptive response
than do closed-ended questions. Questions of this type can
be broken down into categories that identify the format and
content of the expected response. Accurate classification of
open-ended questions can lead to more appropriate
responses from question-answering systems and other
intelligent systems – leading to better human/computer
interaction. This paper demonstrates how support vector
machines (SVM) are used successfully in the classification
of open-ended questions.

Introduction
Question-Answering (QA) systems have a goal of
returning intelligent responses that are correctly formatted
based on the needs of the question – instead of a list of
documents, as is the case with Information Retrieval (IR)
systems. Accurate classification of questions based on the
type of response required is critical to QA systems so that
the response is appropriate to the goals set out by the
question. In a similar manner, categorization of questions
by subject matter has been shown to enhance the accuracy
of QA systems by matching a question category to an
answer category. In (Moschitti and Harabagiu, 2004), an
SVM (along with other techniques) was trained to classify
questions into subject categories, which could then be
matched to answer categories, thus improving question-
answering performance.

For the purpose of this study, we will define an open-
ended question as a question that requires a thoughtful
answer. Interviewers, marketing people, and instructors
use open-ended questions in order to extract as much
information as possible from a subject. For example,
instead of asking, “Is the number 7 a prime number?”
which is a closed-end question requiring only a “yes” or
“no” response; the question could be asked, “Explain why
the number 7 is a prime number.” The latter question
requires a descriptive and thoughtful answer.

Open-ended questions can be further categorized into
differing classes depending on the question content and
wording. Descriptive answers are required for questions
such as “Describe the characteristics of an isosceles
triangle.” A question such as “List the advantages and
disadvantages of solar panel based energy generation” calls
for a contrasting response. If a technique can be found that

is able to accurately classify open-ended questions, this
technique could add much value to the problems of
human/machine interaction by allowing a system to
respond more appropriately to natural language requests.

The Support Vector Machine (SVM) is an emerging
machine learning technology that is becoming a more
viable alternative to augment and even replace other more
mature technologies such as neural networks and nearest
neighbor algorithms (Hearst et al., 1998). The Support
Vector Machine grew out of research into statistical
learning techniques in the late seventies conducted by
Vladimir Vapnik and was furthered in the 1990s by Vapnik
and others at AT&T Bell Laboratories (Vapnik, 1998).
The SVM is a supervised learning machine that is trained
by using a dataset that contains feature sets with both
positive and negative examples of the data to be
categorized. In its simplest form, as shown in Figure 1, the
SVM maps the training dataset into a feature space and
calculates an optimal hyperplane (or decision boundary)
that will separate the positive and negative feature points in
such a manner as to maximize the distance (or margin)
from each classification boundary (or support vector).
(Burges, 1998) Once the training is complete, new feature
points can be classified by the SVM by determining where
the feature lies in relation to the hyperplane.

Figure 1 – Basic SVM Theory

 The open-ended question classification problem is
closely related to the text classification problem, in which a
machine learner must classify documents that may or may
not display a common overlap of keywords or key phrases
that establish document class membership. The use of an
SVM in text classification has been well researched and
found to have good performance without complex natural
language processing (Joachims, 2001). The use of an
SVM to solve a text classification problem requires that
importance weights be assigned to each term in the corpus
of training documents - resulting in a highly dimensional
feature set. (Leopold and Kindermann, 2002)
demonstrates term-to-vector transformations and compares
the performance of word-stemming vs. non-stemming
along with various weighting factors including: inverse
document frequency and redundancy when used as input to
an SVM for document retrieval. They show that word
stemming along with Term-Frequency-Inverse Document
Frequency (TF-IDF) achieves good performance in
document recall with a similar SVM as was employed in
this research.

It could be argued that perhaps a simple keyword search
approach may yield performance equal or better than that
of machine learning techniques. However, this would
represent a tremendous amount of work and ignores the
fact that subtleties may exist in the problem space that
make straightforward text parsing and keyword recognition
problematic (Zhang and Lee, 2003). Also, the SVM has
been shown to have the best classification accuracy in
other question classification problems when pitted against
other machine learning algorithms (including Nearest
Neighbor and Naïve Bayes, for example) (Zhang, and Lee,
2003).

Question Classification and Parsing
The goal of this experiment is to transform the question
dataset into feature vectors that can be used to train an
SVM to recognize a specific class of open-ended question.
In order to accomplish this task, several steps are required.
First, a set of open-ended question classes must be
established based on the type of answer required for each
class. Table 1 lists the classes that will be used to group
the training question dataset for this experiment.

For each class of question, training data that contains
both positive and negative question examples will be
processed and supplied to the SVM. Then the performance
of the machine will be tested using other examples that
have a known classification. For the purposes of this
study, the SVM will be limited to a binary classifier, so
each classification will have separate training and testing
datasets.

Testing and Training Data
Each question class consists of a set of files containing all
questions required for training and testing the SVM in that
classification. The set of questions that are to be presented
to the SVM are assumed to be in American English and
have good sentence syntax, structure, and semantics. No
extra language processing is done to ensure that each
question makes sense grammatically and intellectually.

Forming Text Attribute Data
In order for the input data to be processed by the SVM, the
text must be processed into a word list with attribute
vectors. The input dataset for a classification will be
filtered to remove symbols and punctuation and to remove
stop words such as: a, and, the, etc. Punctuation and stop
words have no bearing on the classification of the question.
Word stemming will also be applied to reduce words to
their root form. Stemming removes inflections and
variations from words – such as “s” in plural words, or “ly”
in adverbs – so that only the root of the word remains.

Table 1 – Open-Ended Question Classifications

Question Class Expected Answer Format
Advantage/Disadvantage Advantages and disadvantages

(questions may require certain
number)

Cause and Effect Explain the effect of something
on something else

Comparison Differences/similarities between
two or more entities

Definition Relatively short
explanation/description – few
lines or few sentences

Example Explain with an example,
provide example

Explanation More explanation – more
descriptive than ‘what’ questions

Identification Identification of some kind
List A list of points – may or may not

be in sequence
Opinion Give personal opinion on a

particular point or statement –
either support or argue

Rationale Explain why a
statement/question is true or false

Significance Explain the importance of
something or why it may be
important

This will maximize the term count of the root word and
boost the influence of the word in the question class. At
this point a word list can be built containing the word
stems of the input data. From this word list, a training (and
testing) dataset can then be built containing all questions
for a classification in the following format:

 1. +1 (positive) or –1 (negative) classification
 2. pairs of attributes containing the index of a word

contained in the question in the word list along with the
TF-IDF of the word.

The TF-IDF (Term Frequency – Inverse Document
Frequency) is calculated for each term and included as a
feature value in the final vector for each example. TF-IDF
is frequently used in text processing and document
retrieval. The TF-IDF of a term is a weight that indicates
the relevance of the term in the corpus of documents.
Term Frequency is simply a count of the number of times a
term appears in a question. Inverse Document Frequency
is a measure of the importance of a term in a set of
documents. Thus weight should represent the importance
of a term in the question class.

Training the SVM
The resulting vector list is used to train an SVM to
correctly distinguish a question that belongs to a particular
classification (and one that does not belong). The SVM
that is used for this experiment is the SVMLight
(Joachims, 1999) program implemented by Thorsten
Joachims (this software is available at
http://svmlight.joachims.org/). The SVM is executed in
training mode and allowed to create a data model for each
classification. As discussed previously, the SVM operates
by plotting the feature vectors, calculating the support
vectors and finding the optimal hyperplane that separates
the positive and negative support vectors. Once the SVM
is trained, classification can occur by determining where a
feature vector lies in relation to the established support
vector model.

Testing the SVM
Once the SVM has been trained, testing and evaluation of
the SVM model can take place. While executing the SVM
software in classification mode, the testing dataset (which
has been prepared in the same manner as the training
dataset) is provided to the SVM and the classification
results are compared against the known (positive or
negative) classification of each question. The error rates of
the SVM can then be measured and reported.

Experiment Setup

The majority of the processing in this experiment is
consumed by the text processing necessary to generate the
appropriate input for the SVM. Figure 2 illustrates the
steps required to complete the experiment.

As previously discussed, input to the experiment
consists of a file of open-ended questions that belong to a
certain classification. All of the test data for one
classification of question is stored in a single directory
with the following file names:

 train_pos.txt, train_neg.txt–training examples (pos. and neg.)
 test_pos.txt, test_neg.txt –testing examples(pos. and neg.)

In this experiment we used questions from a question
bank of 1000 open-ended questions that were created by
the authors or inspired from various textbook and reference
sources. They covered software engineering and
operating systems areas of computer science. Each
question was manually segregated into the proper question
class and placed into the appropriate training or testing file
with no particular ordering observed.

p
Figure 2 – SVM Experiment Setu

 All of the files contain one question per line and each
line terminated with a ASCII carriage return / line feed
sequence. The files are used to generate an overall word
list that can be provided to the word vector generator. In
order to generate the most efficient word list, the questions
are parsed and tokenized. Punctuation and stop words are
removed. Stemming is then applied to the words, so that
only the root word of each token remains. The word list is
then generated as the final step in this process.

Word vector generation is then performed by comparing
each term in each question to the word list in such a way as
to generate the required TF-IDF value. The feature vector
is then enumerated for each question, noting whether the
vector represents a positive (1) or a negative (-1) example.
The format of the vector list produced is sparse vectors,
where properties (terms) with zero values are not explicitly
listed. The index of the term in the word list is specified
along with the TF-IDF of the term. An example of the
complete text to vector list transformation is given here:

Example Questions from the Explanation Class:

Explain the concept of functions.
Explain the purposes of a device driver.

Word List Generated:

Explain, concept, funct, purpos, devic, driver

Resulting Sparse Vectors (some decimals removed):

1 1:0.208106 2:0.76535539 3:0.60903436
1 1:0.133641 4:0.62165690 5:0.45741152 6:0.62165690

Separate vector list files are produced for training and

testing data. The overall number of features in the datasets
may reach into the thousands, but the SVMLight
implementation is able to handle feature sets of this size
without adjustment.

Once the text preparation is complete, the SVM training
and testing can proceed. First the SVM is given the
training data so that the support vectors can be calculated
and the decision boundaries are established. Then, the
testing dataset is supplied to the training model so that the
SVM can make predictions on the test cases and judge the
accuracy of the classification decisions. The SVMLight
classification module will log the results of the testing so
that the statistics can be analyzed upon completion of the
experiment.

Results
The training dataset was given as input to the SVM learner
application, then a separate test dataset was given to the
SVM classifier application and the resulting data was
analyzed. The results of the experiment are summarized in
Table 2. The training dataset consisted of equal numbers
of both positive and negative examples of each question
classification. The testing dataset contained both positive

and negative examples as well, so the SVM was judged on
the precision and accuracy of classifying both positive and
negative examples of each classification. The magnitudes
of the term weights were normalized to [0, 1] which
improves the accuracy of the SVM. The feature vectors
were kept in the same order as the question lists, so that
incorrect identifications could be easily traced back to the
original question. SVMLight provides several log files
that are invaluable for troubleshooting the classifier and
determining the final performance statistics.

Overall, the SVM classifier was, on average, 74.6%
accurate in classifying both positive and negative test
examples for each class of open-ended question. The
classifier displayed the greatest accuracy with the
Significance class (92.9%); the least accuracy with the
Identification class (50.0%).

Table 2 – SVM Classification Results

Question
Classification

Total Training
Examples

(Pos. & Neg.)

Accuracy Precision/
Recall

Advantage/
Disadvantage

30 80.0% 66.7% / 80.0%

Cause and
Effect

30 73.3% 55.6% / 100.0%

Comparison 100 87.5% 85.7% / 90.0%

Definition 240 68.3% 64.9% / 80.0%

Example 60 55.6% 50.0% / 50.0%

Explanation 300 83.3% 83.3% / 50.0%

Identification 60 50.0% 66.7% / 37.5%

List 30 86.7% 80.0% / 80.0%

Opinion 60 75.0% 72.7% / 80.0%

Rationale 60 70.0% 70.0%/ 70.0%

Significance 30 92.9% 100.0% / 80.0%

Precision measures the percentage of positive examples

that were correctly identified as opposed to the total
number of correct and incorrect positive examples
identified and is given by:

ivesFalsePositvesTruePositi
vesTruePositiecision

+
=Pr

The Significance class achieved the highest precision

(100%) and the Example class had the lowest precision
(50.0%).

Recall (also known as sensitivity) measures the
percentage of positive examples that were correctly
identified as opposed to the total number of positive
examples that existed and is given by:

ivesFalseNegatvesTruePositi
vesTruePositicall

+
=Re

The Cause and Effect class attained the highest recall

(100.0%) and the Identification class had the lowest recall
(37.5%).

Conclusions
In training the SVM for this task, we were hoping that the
SVM could be trained to recognize the occurrence of
certain keywords or phrases in a question class and then,
based on the recurrence of these same keywords, be able to
correctly identify a question as belonging to that class. In
the same way, if a question did not contain certain
keywords, the SVM should distinguish the question as not
belonging to the question class being tested. In our trials,
we had mixed results - with some classes performing better
than others.

In analyzing the test results, there does not seem to be a
correlation between the number of training examples and
the accuracy of the classifier. For even though the
Explanation class contained the most training examples
(300), the SVM did not exhibit the most accuracy in this
class. In fact, the most accurate class (Significance –
92.9%) was among the classes with the fewest examples.

The poor results of the SVM classifier may be the result
of ambiguous terms appearing in some of the
classifications. For example, in the Identification class the
keyword “what” appears in most of the positive training
and testing examples. This same keyword is also a
common word in other question classes as well, which may
cause some ambiguity in the classifier. The low recall
percentage of the Identification class shows that the
classifier associated more of the features in the positive test
examples with the negative training examples than it
associated with the positive training examples.

Better results were obtained in classes that contained
keywords that were uncommon in the other categories. For
instance the Significance class contains the keywords
“significance” and “importance” which are uncommon in
the other classes. This is also the case in the Comparison
class, which contains words such as “compare” or
“differences” which are also infrequent in the other classes.

We can conclude that a properly trained Support Vector
Machine is able to accurately classify open-ended
questions. But occurrences of common keywords that
frequently appear across question classifications results in
lowered accuracy.

References

Burges, C. J. C. (1998). “A Tutorial on Support Vector
Machines for Pattern Recognition.” Data Mining and
Knowledge Discovery, 2:121–167.

Hearst, M. A., Schölkopf B., Dumais S., Osuna E., and
Platt J. (1998). “Trends and Controversies-Support Vector
Machines.” IEEE Intelligent Systems, 13(4): 18-28.

Joachims, T. (1999). “Making Large-Scale SVM Learning
Practical.” In T. Joachims, Advances in Kernel Methods -
Support Vector Learning. Cambridge, MA: MIT Press.

Joachims, T. (2001)."A Statistical Learning Model of Text
Classification With Support Vector Machines." In
Proceedings of SIGIR. 2001, NY:ACM Press,128–136.

Leopold, E., and Kindermann, J. (2002). “Text
Categorization With Support Vector Machines: How to
Represent Text in Input Space?” Machine Learning,
46(3):423–444.

Moschitti, A. and Harabagiu, S. (2004). “A Novel
Approach to Focus Identification to Question/Answer
Systems.” Proceedings of the Workshop on Pragmatics of
Question Answering at HLT-NAACL 2004, 43-51.

Vapnik, V. Statistical Learning Theory. John Wiley and
Sons, Inc. New York. 1998.

Zhang, D., Lee, W. S. (2003) “Question classification
using support vector machines.” Proceedings of SIGIR
2003, NY:ACM Press, 26-32.

	Abstract
	Introduction
	Question Classification and Parsing
	Testing and Training Data
	Forming Text Attribute Data
	Question Class
	Expected Answer Format

	Training the SVM
	Testing the SVM

	Experiment Setup
	Results
	Conclusions
	References

